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Abstract

We present an advancement in the evolution of MPDATA (multidimensional positive definite advection transport

algorithm). Over the last two decades, MPDATA has proven successful in applications using single-block structured

cuboidal meshes (viz. Cartesian meshes), while employing homeomorphic mappings to accommodate time-dependent

curvilinear domains. Motivated by the strengths of the Cartesian-mesh MPDATA, we develop a new formulation in

an arbitrary finite-volume framework with a fully unstructured polyhedral hybrid mesh. In MPDATA, as in any

Taylor-series based integration method for PDE, the choice of data structure has a pronounced impact on the technical

details of the algorithm. Aiming at a broad range of applications with a large number of control-volume cells, we select

a general, compact and computationally efficient, edge-based data structure. This facilitates the use of MPDATA for

problems involving complex geometries and/or inhomogeneous anisotropic flows where mesh adaptivity is advanta-

geous. In this paper, we describe the theory and implementation of the basic finite-volume MPDATA, and document

extensions important for applications: a fully monotone scheme, diffusion scheme, and generalization to complete flow

solvers. Theoretical discussions are illustrated with benchmark results in two and three spatial dimensions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

MPDATA (multidimensional positive definite advection transport algorithm [22,23]) is a family of finite-

difference approximations to the advective terms in the conservative (flux) formulation of fluid equations.

In general, MPDATA is akin to the dissipative Lax–Wendroff schemes (also known as Taylor–Galerkin in
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the finite-volume/finite-element literature) that can be derived from the first-order-accurate upwind algo-

rithm (alias donor-cell) by adding on the r.h.s. the negative of the space-centered representation of the

first-order error. In MPDATA, however, the compensation of the leading truncation error of the upwind

scheme is nonlinear. It is achieved through the iterative application of the upwind differencing, where in the

second and following iterations the leading truncation error terms (of the upwind scheme) are cast into the
form of advective fluxes, defined as products of the current solution iterate and a suitable velocity field.

The resulting algorithm is second-order accurate, conservative, fully multidimensional (i.e., free of the split-

ting errors), and computationally efficient; yet it maintains the signature properties of upwind differencing

such as the strict preservation of sign of the transported field and relatively small phase-error.

The theoretical foundation of MPDATA – the modified equation approach – facilitates generalizations

of the scheme to transport problems beyond elementary advection. In the early eighties, the algorithm was

invented as an inexpensive alternative to flux-limited schemes for evaluating the advection of nonnegative

thermodynamic variables (such as water substance) in atmospheric cloud models. Since then, a variety of
options have been documented that extend MPDATA to full monotonicity preservation, to third-order

accuracy, and to variable sign fields (such as momentum). MPDATA was generalized to a complete fluid

solver in the early nineties [26]. In analyzing the truncation error of approximations to the momentum

equation, one finds error terms that depend on the interaction of advection with the forcing terms, includ-

ing the pressure gradient terms. Many implementations of nonoscillatory algorithms treat advection sepa-

rately from the forcings, leaving this error uncompensated, thereby reducing the order of accuracy of the

solution and potentially leading to oscillations and even instability [28]. In MPDATA, this error is compen-

sated by effectively integrating the forcing terms along a flow trajectory rather than at a grid point. A com-
prehensive review of MPDATA, including both the underlying concepts and the details of implementation,

can be found in [30]. The overview of MPDATA as a general, nonoscillatory approach for simulating

geophysical flows – viz. high Reynolds number and low Mach number flows – on micro-to-planetary scales

has been presented in [33].

Recently, MPDATA has attracted attention in the context of monotonically integrated large eddy simu-

lations (MILES), as a high Reynolds number fluid solver with implicit turbulence modeling capability

[12,14,4]. Unlike most nonoscillatory methods, MPDATA is based directly on the convexity of upwind

advection – i.e., numerical solutions remain bounded by surrounding local values from the preceding time
step, given a solenoidal advecting flow and adequately limited temporal increment1 – rather than on the idea

of flux limiting. Iterative application of upwinding in MPDATA greatly simplifies the task of designing

higher-order schemes without the necessity of knowing the details of the resulting truncation error. Since

the errors are cast in the form of the advective fluxes, the convexity of upwinding warrants their compensa-

tion while preserving sign of the transported field. In consequence, the linear computational stability of the

first donor-cell step implies the nonlinear stability of the entire MPDATA advection, a property essential for

simulations of turbulent flows. Since the upwind scheme filters high frequencies on the grid, and each subse-

quent step reverses the dissipative error of the preceding step,MPDATAbears an analogy to generalized sim-
ilarity models, where an estimate of the full unfiltered Navier–Stokes velocity (which enters the subgrid-scale

stress tensor) is obtained by an approximate inversion of the filtering operation, i.e., deconvolution; cf. [5].

In this paper, we report on a new development in MPDATA schemes. We derive, discuss, and test the

finite-volume formulation of MPDATA with an edge-based data structure and arbitrary hybrid mesh.

Although MPDATA has proven successful in simulations of geophysical flows using single block, struc-

tured, topologically rectangular meshes employing a continuous time-dependent curvilinear mapping ap-

proach [17,36], its potential for finite-volume approximations has been realized only recently. Bacon

et al. [2] implemented basic MPDATA advection in the multiscale environmental model OMEGA for oper-
ational forecast of weather and pollutant dispersion. Independently, Margolin and Shashkov [13] drew
1 For arbitrary flow a weaker condition of sign preservation can be assured.
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inspiration from the MPDATA approach to develop a second-order sign-preserving conservative interpo-

lation for two-dimensional ALE grids. Our goal is to assist the reader in developing MPDATA methods for

fluids on arbitrary meshes. In MPDATA, as in any Taylor-series based integration method for differential

equations, the choice of data structure has a pronounced impact on the details of the algorithm. Since our

aim is a broad range of applications involving complex geometries and inhomogeneous flows, we have
elected a general, compact and computationally efficient edge-based data structure. This contrasts with

the approach adopted in [2], where focus on meteorological applications dictated an unstructured-mesh dis-

cretization only in the horizontal, with cell-centered and face-centered control-volume staggering of scalar

and vector dependent variables, respectively. A discussion of the computational implications of various

data structures can be found in [16].

The remainder of the paper is organized as follows. In Section 2, we derive the basic sign-preserving fi-

nite-volume MPDATA in abstraction from any particular data structure, while pointing out the differences

and parallels to the standard finite-difference formulation. The latter is worthwhile because our derivation
of the finite-volume formulation reveals new aspects of MPDATA important (potentially) for its finite-

difference counterpart. In Section 3, we specify the algorithm using the edge-based median-dual finite-vol-

ume approach, optimal in light of the preceding analysis. The computational stability and accuracy of the

basic scheme are evaluated in Section 4. In Section 5, we develop options of MPDATA important for appli-

cations: (i) a fully monotone scheme, in the spirit of the flux corrected transport (FCT); (ii) the diffusion

scheme; and (iii) an extension of the algorithm to systems of inhomogeneous transport equations (viz., com-

plete flow solvers). Section 6 concludes the paper. Proofs of stability and convexity for finite-volume

upwinding are supplemented in Appendix A.
2. Finite-volume MPDATA; basic scheme

Here, we are concerned with the elementary advection equation:
oW
ot

¼ �r � ðvWÞ; ð1Þ
where W = W(x,t) is a nondiffusive scalar field assumed nonnegative at t = 0, and the v = v(x) is a prescribed

flow assumed stationary. The adopted assumptions merely simplify the presentation; extensions to nonneg-

ative scalar fields and unsteady flows – discussed later in this paper – directly follow the developments for

finite-difference MPDATA, cf. [30]. Similarly, we shall disregard the variability of an unstructured grid in

time – an assumption easy to relax following our finite-difference experience [33]. Integrating (1) over the vol-
ume of an arbitrary cell – while employing the Gauss divergence theorem �X$ Æ (vW) = �oXW v Æ n – results in
Wnþ1
i ¼ Wn

i �
dt
Vi

XlðiÞ
j¼1

F ?
j Sj: ð2Þ
Fig. 1 shows a face of an arbitrary computational cell containing vertex i, together with the normal and

the edge connecting vertex i with one of its immediate neighbors j; there are l(i) edges connecting the vertex i

with its neighbors. Sj refers both to the face per se and its surface area. Eq. (2) is exact, given Wnþ1
i and Wn

i

are interpreted as the mean values of W within the volume Vi of the cell containing vertex i; while F ?
j is

interpreted as the mean normal flux through the cell face Sj averaged over temporal increment dt. The
approximation begins with specifying fluxes F ?

j in terms of data available on the grid. The finite-volume

first-order-accurate upwind scheme assumes the form
F ?
j ¼ ½v?j �

þWn
i þ ½v?j �

�Wn
j ; ð3Þ



Fig. 1. Schematic of an edge piercing an arbitrary cell-face.
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where
2 We
½v�þ :¼ 0:5ðvþ jvjÞ; ½v�� :¼ 0:5ðv� jvjÞ; ð4Þ

and normal velocity v^ := v Æ n is evaluated at the face Sj.

2 The nonnegative/nonpositive parts of v?j always

coincide with outflow/inflow from the ith cell.

It is easy to show (see Appendix A) that
8i

XlðiÞ
j¼1

½Uj�þ 6 1; Uj :¼
v?j Sjdt

Vi
ð5Þ
suffices for the ‘‘positivity’’ of the solutions – i.e., consistent with the properties of the governing PDE (1),

numerical advection in (2), (3) preserves the nonnegative/nonpositive character of the transported fields.

The positivity of flux-form algorithms implies nonlinear stability, whereas for solenoidal flows
1

Vi

XlðiÞ
j¼1

v?j Sj ¼ 0; ð6Þ
(5) also assures the convexity of the solutions, i.e.,
min
j¼1;lðiÞ

ðWn
i ;W

n
j Þ 6 Wnþ1

i 6 max
j¼1;lðiÞ

ðWn
i ;W

n
j Þ: ð7Þ
These apparent strengths of the scheme are offset, however, by the notorious numerical viscosity.

The key idea of MPDATA [22,23] is to compensate for the truncation error of the upwind scheme by

reusing the same upwind algorithm but with a pseudo velocity defined based on the leading (dissipative)

truncation error of the first step. By construction, this leads to a finite-difference scheme that is second-
order accurate, yet sign-preserving for arbitrary flows.

In order to assess the leading truncation error of the finite-volume upwind differencing, we shall adapt

the modified-equation procedure familiar from finite-difference MPDATA. The idea is to expand all dis-

crete data into a Taylor series in time and space, and then to represent higher-order temporal derivatives

in terms of spatial derivatives, to derive a continuous equation (approximated effectively by the numerical

scheme at hand) for improving the approximation. We begin by expanding Wi and Wj that enter the defi-

nition of the upwind flux in (3) about a point �sj� along the edge connecting vertices i and j, where the edge

intersects the cell face Sj:
use := to mean defined as, to distinguish from ” (identically).
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Wi ¼ Wjsj þ
oW
or

����
sj

ðri � rsjÞ þ Oðdr2Þ;

Wj ¼ Wjsj þ
oW
or

����
sj

ðrj � rsjÞ þ Oðdr2Þ
ð8Þ
with r referring to the parametric description of the edge r(k) = ri + k(rj�ri); k 2 [0,1]. Now, implementing

(8) in the definition of the upwind flux (3), and rearranging the terms, results in
F ?
j ¼ v?j Wjnsj þ 0:5jv?j j

oW
or

����n
sj

ðri � rjÞ þ 0:5v?j
oW
or

����n
sj

ðri � 2rsj þ rjÞ þ Oðdr2Þ ð9Þ
which reveals the explicit form of the OðdrÞ error in the approximation (2), (3). In order to see the OðdtÞ
error, it suffices to expand Wn about tn + 1/2
Wjnsj ¼ Wjnþ1=2
sj

� 0:5
oW
ot

����nþ1=2

sj

dt þ Oðdt2Þ; ð10Þ
only in the first term on the r.h.s. of (9). Expanding spatial derivatives (about tn + 1/2) in the remaining terms

is unnecessary, as it would lead to OðdtdrÞ � Oðdr2Þ errors.
For preserving the explicitly forward-in-time (as opposed to centered-in-time) character of the approx-

imation (2), (3), it is important to express the temporal derivative in (10) in terms of spatial differencing to
Oðdt; drÞ at least. Although written in integral form, (2), (3) approximates (1) to OðdrÞ essentially by design.3
Expanding (1) as
oW
ot

¼ �v � rW�Wr � v; ð11Þ
and replacing the temporal derivative in (10) with the r.h.s. of (11), and then substituting the resulting rela-

tion in (9) for Wjnsj in the first term on the r.h.s. results in
F ?
j ¼ v?j Wjnþ1=2

sj
þ Error;

Error ¼ �0:5jv?j j
oW
or

�����
sj

ðrj � riÞ þ 0:5v?j
oW
or

�����
sj

ðri � 2rsj þ rjÞ þ 0:5dtv?j ðvrWÞj�sj

þ 0:5dtv?j ðWr � vÞj�sj þ Oðdr2; dt2; dtdrÞ: ð12Þ
The asterisk in lieu of the temporal level in the Error symbolizes either n, n + 1/2, or n + 1, as any of these

temporal positions can be considered without affecting the form or the order of Error. The result in (12)

states that the upwind flux in (3) can be decomposed into a time-centered flux through the face and the
Oðdr; dtÞ flux of a predominantly Fickian character.

As with finite differences, finite-volume MPDATA consists of two upwind (2), (3) iterations. In the first

iteration, the input field and flow velocity, W and v, are those from the preceding time step tn. In the second

(corrective) iteration, the input field W is the result of the preceding upwind iteration and the pseudo veloc-

ity ~v :¼ � 1
WError. In particular,
ev?j ¼ 0:5jv?j j
1

W
oW
or

� ������
sj

ðrj� riÞ� 0:5v?j
1

W
oW
or

� ������
sj

ðri � 2rsj þ rjÞ� 0:5dtv?j ðv
1

W
rWÞ

�����
sj

� 0:5dtv?j ðr � vÞj�sj

ð13Þ
cause the linear size of the control volume is OðdrÞ, and because the mean is bounded by the extrema, there exists a point within

trol volume where the field value represents the mean; whereupon, the mean value equals the field value at any point within the

l volume to OðdrÞ, given singly differentiable fields.
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with the asterisk now indicating the first-order estimate of the n + 1 solution from the preceding upwind

iteration. In principle, the entire process of estimating the residual error and compensating it can be con-

tinued, iteration after iteration, reducing the magnitude of the truncation error;4 yet in practice one correc-

tive iteration suffices for recovering the overall accuracy of time-space centered schemes.

The outlined procedure conveys the essence of the finite-volume MPDATA in abstraction from any par-
ticular data distribution and details of the discrete representation of differential operators. Although de-

rived for the edges, the general form of the pseudo velocity (13) applies to many finite volume schemes

with various cell arrangements. Here, (13) deserves a comment because it offers much guidance on how

to design effective implementations, and because it involves a few subtleties compared to the forms previ-

ously published in the context of finite differences.

The first term on the r.h.s. of (13) is well known from finite-difference theory, and is straightforward to

approximate on unstructured meshes. The second term is new. It depends on the mesh skewness, and van-

ishes when the cell face is at the midpoint of the edge. Note that as rsj approaches rj or ri, the second and
third terms on the r.h.s. of (9) combine into a single Fickian flux � ½v?j �

�
, respectively. This is intuitively

correct, as in these limits the corresponding donor-cell flux in (3) is already precise with respect to the loca-

tion of W. This �mesh-skewness� term can be set to zero with adequate discretization – e.g. using the median

dual finite volume approach, discussed in the next section. The third term �vW�1 $W in (13) is the most

cumbersome. On an orthogonal mesh it becomes naturally decomposed into convective derivatives normal

and tangential to cell faces. In a general finite-volume framework, such a decomposition requires an addi-

tional effort, unnecessary for the schemes with single corrective iteration. Following Bacon et al. [2], here we

shall evaluate the entire convective derivative in terms of Cartesian components. For the sake of compu-
tational stability, we shall extrapolate from the experience with finite-difference formulations and assure

that the denominators and numerators in approximations to all �W�1oW factors in (13) use the same ele-

ments. This allows for exploiting the elementary boundedness property j
P

�W=
P

Wj 6 1 of positive-

definite scalar fields. Finally, approximating the last term on the r.h.s. of (13) is straightforward, because

of its independence on W derivatives. In the solenoidal flows, this last term vanishes identically in the first

corrective iteration of MPDATA, whereas in subsequent iterations it enters as Oðdt2Þ and is thus negligible

[23]. In arbitrary flows, it may still vanish identically given W represents a mixing ratio (a fluid property per

unit of mass) as oppose to a density type variable. Then, Vi in (2) acquires the sense of a control mass, and
the velocities in the subsequent formulae become momenta. In consequence, the fluid density q enters

explicitly in pseudo-velocity formulae, but the �$ Æ v term becomes multiplicative of the mass-continuity

equation (i.e., zero). These results are important for anelastic systems popular in geophysical and astro-

physical applications. Since they are independent of spatial discretization, all related finite-difference devel-

opments (cf. [33] for a discussion) translate to a finite-volume framework.
3. Implementation

The analysis of the preceding section indicates that some specifications of control volumes may be opti-

mal for MPDATA because they simplify the leading truncation error of the upwind scheme and reduce the

computational effort associated with evaluating the anti-truncation-error pseudo velocity (13). In particu-

lar, the median-dual finite-volume approach (see [3] for a comprehensive discussion) constructs the control

volume associated with the vertex i by joining the centers of polyhedra cells (encompassed, in 3D, by con-

secutive edges originating in i) and midpoints of edges surrounding the vertex i – thereby allowing for a

mean curvature of the face and canceling out the mesh skewness error in (13). Fig. 2 shows a schematic
of the resulting cell face in 3D, and a more complete display of the mesh in 2D is shown in Fig. 3.
4 Reducing the order of the error requires third-order analysis to begin with, cf. [11].



Fig. 2. The edge-based median-dual approach. The edge connecting vertices i and j pierces the face Sj of a 3D computational cell

surrounding vertex i. Open circles represent centers of polyhedra cells referred to in the text.

jSji

Fig. 3. The edge-based, median-dual approach in 2D. Symbolic and labeling conventions are the same as in Fig. 2.
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Having defined the mesh, all geometric elements such as cell volumes, cell face areas, and normals are

evaluated from elementary vector calculus. Hereafter, Sj ” Sjnj symbolizes the oriented surface element with

nj denoting the normal. Since normal fluxes in (2) are always proportional to normal velocities vj Æ nj, the
face surface area Sj = iSji is absorbed in the definition of the normal velocity v?j :¼ vj � Sj while setting

Sj ” 1 in all relevant formulae. Consequently, the surface-area-weighted advective velocities normal to

the cell face Sj are evaluated at cell faces as
v?j ¼ Sj � 0:5½vi þ vj�; ð14Þ
and a flow chart of the basic MPDATA can be summarized as follows.

� Step 1: Calculate the upwind fluxes normal to the cell face Sj using formulae (3), (4) with advective veloc-

ities defined in (14).

� Step 2: Update W, according to (2), using the upwind fluxes evaluated in the preceding step
W�
i ¼ Wn

i �
dt
Vi

:
XlðiÞ
j¼1

F ?
j : ð15Þ
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� Step 3: Calculate the surface-weighted antidiffusive pseudo velocity at the face according to (13), using

the field value updated in the preceding step and v?j from (14)
5 Th

identit
6 We
v̂?j ¼ jv?j j
jW�

j j � jW�
i j

jW�
j j þ jW�

i j þ e
� dt

2
v?j v � rjW�j

jW�j
þ r � v

 !
Sj

; ð16Þ
where e denotes a small constant, e.g. 10�10, to assure that the denominator does not vanish where

W�
j ¼ W�

i ¼ 0.5 The factor in brackets inside the second term on the r.h.s. of (16) has been written symbol-

ically for conciseness. Its approximation follows the discussion at the end of Section 2.

In finite-volume framework, evaluation of partial derivatives oU/oxI – where superscript I refers to

Cartesian coordinates xI – can always be interpreted in terms of Gauss� theorem, by representing the deriv-
ative as the divergence of the augmented vector U$xI. Depending upon the specification of an auxiliary

control volume which surrounds the edge midpoint, a number of approximations can be found of various

degrees of complexity and associated computational effort. Keeping in mind the efficacy of the edge-based

formulation, here we consider for the auxiliary control volume the sum of the control volumes of the dual

mesh surrounding vertices i and j, see Fig. 3, such that
oU
oxI

� �
j

¼ 1

Vj

XlðiÞ
m¼1

U
i;m
SI
m þ

XlðjÞ
m0¼1

U
j;m0

SI
m0

 !
; Vj � Vi þVj; ð17Þ
where U ” |W*|, U
i;m � 0:5ðUi þ UmÞ and SI

m denotes the Ith area component of the oriented surface element

at the mth edge.6 The associated U – a denominator in the second term on the r.h.s. of (16) – is evaluated as

a surface-area weighted average from the same control volume
Uj ¼
1

Sj

XlðiÞ
m¼1

U
i;mjSI

mj þ
XlðjÞ
m0¼1

U
j;m0

jSI
m0 j þ e

 !
;

Sj �
XlðiÞ
m¼1

jSI
mj þ

XlðjÞ
m0¼1

jSI
m0 j:

ð18Þ
Similarly, when required, the flow divergence appearing inside the bracket in (16) is evaluated as
r � vð Þj ¼
1

Vj

XlðiÞ
m¼1

v?m þ
XlðjÞ
m0¼1

v?m0

 !
: ð19Þ
� Step 4: Calculate the normal (to the cell face) upwind fluxes as in step 1, but usingW� and v̂?j from steps 2

and 3, respectively,
F �
j ¼ ½v̂?j �

þW�
i þ ½v̂?j �

�W�
j : ð20Þ
� Step 5: Updating the field by reusing the upwind scheme
Wnþ1
i ¼ W�

i �
dt
Vi

XlðiÞ
j¼1

F �
j ð21Þ
completes the basic MPDATA scheme.
e use of absolute values in (16) extends validity of the scheme to variable-sign fields. It relies on W�1oW/on ” |W| �1o|W|/on, an
y valid for arbitrary W with accuracy to topological sets of measure zero; cf. [30] for a discussion.

have also tested an alternate, potentially more accurate scheme with a smaller stencil but found no significant differences.
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4. Consistency, stability, and accuracy of finite-volume MPDATA
The finite-volume algorithm described in the preceding section is constructed from the classical upwind

scheme that is consistent, conditionally stable, and first-order accurate. These properties, together with the

algorithm�s design, predetermine the consistency, stability, and accuracy of MPDATA [23]. In particular,

since the antidiffusive velocity (16) tends to zero as dr, dt! 0, the consistency of MPDATA is implied by

that of the finite-volume upwind. Similarly, since the corrective upwind Step 5 compensates the first-order

leading error of the preceding upwind Step 2, with accuracy to the first order at least, the uncompensated

portion of the upwind error remains at second order. The latter suffices for rising the formal accuracy order
of finite-difference upwinding – the second- and third-order asymptotic convergence rates of various

MPDATA options have been shown for Cartesian meshes, cf. [30] and references therein. For arbitrary

meshes, however, this is not necessarily the case, since the formal accuracy of the centered scheme – a target

of the MPDATA derivation; cf. Eq. (12) – is not mesh independent [18]. Notwithstanding, Bacon et al. [2]

demonstrated the second-order convergence of their cell-centered unstructured MPDATA using a standard

‘‘rotating-cone’’ benchmark while invoking intensive local mesh refinement. Later in this section we shall

employ similar tests to illustrate the present discussion. In particular, we shall demonstrate the second-

and a near second-order convergence rates of finite-volume MPDATA on, respectively, regular and
strongly skewed unstructured grids.

The stability of MPDATA also follows that of the upwind (discussed thoroughly in Appendix A) but it

deserves an elaboration, since there are a few subtleties involved. In 1D, (16) together with |Uj| 6 1 – viz. the

stability and positivity of the original upwind scheme – imply
jÛ jj 6 jUjj � ðUjÞ2 6 jUjj; ð22Þ
whereupon the stability of upwind warrants the stability of MPDATA. A similar occurs for multidimen-

sional problems, but the presence of cross-derivatives resulting from the second term on the r.h.s. of

(16) makes formal proof difficult. In the standard Cartesian-mesh formulation, this task is facilitated some-

what by the accompanying decomposition of the cross-derivative term into the sum of convective deriva-

tives normal and tangential to cell faces. In [23], the stability of upwind implying that of MPDATA has

been proven, but with a caveat that the time step used is smaller than that allowed for the upwind alone;

correspondingly, by the factor 2�1/2 and 2�1, in 2 and 3 spatial dimensions. This particular time step
requirement was a result of assuming the worst case scenario where the velocity components flip sign across

the cell. Since the latter is a rare event in CFD applications, the heuristic limit recommended for all struc-

tured-mesh MPDATA extensions has been that valid for the upwind scheme. For the unstructured-mesh

formulation the problem appears more complicated, and a formal proof eludes our effort. However,

consider the following argument.

Multiplying (16) by dt=Vi – recall that v̂?j already includes Sj – leads to the antidiffusive local Courant

number
XlðiÞ
j¼1

Û j

� �þ ¼
XlðiÞ
j¼1

jUjj Aj �
1

2
sgnðUjÞVj � Bj

� �þ
; ð23Þ
where V is the vector of local Courant numbers with components dtvIjSj=Vj, and jAjj as well as jBI
jj are all

bounded by unity. Since the expression in the square brackets on the r.h.s. of (23) is Oð1Þ, one can always

find a sufficiently small dt such that the stability of the original upwind implies the stability of the entire

scheme. Semi-heuristic considerations suggest half of the time step allowed for the upwind scheme, however

standard conditions (5) or (A.10) appear to suffice in practice. In our experience, the results of MPDATA



Fig. 4. Isolines of cone advected through six rotations around the center of the lower frame (only a quarter of the domain is shown).

The contour interval is 0.25, and the zero contour line is not shown. Left plate, the analytic solution; center plate, the FVMPDATA on

a regular square-mesh; right plate, as in the center but for a triangular mesh.
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advection (for both structured and unstructured meshes) are only weakly sensitive to the fine details of the

cross-derivative term approximations. This suggests that it might be worthwhile to seek an approximation

optimal for the stability while facilitating a proof.

Herein, we corroborate the antecedent arguments, and illustrate the performance of the finite-volume

MPDATA, using a standard solid-body rotation test [22,23,11,30]. A cone of base radius 15 and height

4, centered initially at (75,50), is rotating counter clockwise around the center of a [0,100] · [0,100] domain

with the angular velocity x = 0.1. Fig. 4 displays the isolines of the exact result and two finite-volume (FV)
MPDATA solutions after 6 rotations. The solution in the central plate uses 104 squared cells, whereas the

solution in the right plate uses a triangular grid with a similar distribution of points.7 Except for the time

step for triangular meshes, all parameters of the test and of the display are identical to those in Fig. 1 of [30]

to facilitate further comparisons. The accuracy of the results displayed is quantified in Table 1, where the

corresponding values for the classical upwind and centered-in-time-and-space (leapfrog) schemes are

included for reference. The corresponding finite-difference (FD) results are also included.

We want to call the reader�s attention to a few items in Table 1. First, for the regular square mesh our

edge-based unstructured-mesh finite-volume MPDATA reproduces the finite-difference Cartesian-mesh
result, thereby documenting the reflexivity of the approach. Second, MPDATA strictly preserves the sign

of the transported field, in clear contrast to the leapfrog scheme with dispersive undershoots reaching �20%

of the solution�s amplitude. Third, while the amplitude of the MPDATA results is about 2/3 of the nondis-

sipative leapfrog solutions, the overall accuracy is about 20% better. Fourth, for the triangular mesh the

results are presented for two different time steps. This is to illustrate that the precise equivalence of the test

for Cartesian and automatically generated unstructured meshes is not possible. The ‘‘MPDATA FV trian-

gles dt = 0.1’’ calculation matches the time step from the benchmark test in [30], and produces results sim-

ilar to squares. Although this calculation remained stable, dt = 0.1 violates the stability condition (5) in a
few cells near the domain boundaries – the maximal Courant number based on the advective velocity (14)

was 1.64, still twice as large as the maximal Courant number for the corrective iteration 0.81. The choice of

dt = 0.061 satisfies (5) rigorously, giving the maximal Courant number of the original upwind iteration

0.999, while resulting in a maximal Courant number 0.481 for the corrective iteration. A small sensitivity

to the change of the time step (e.g., 4% reduction of Max in response to 40% time step reduction), common

to a majority of advective solvers, would be further reduced in a third-order type MPDATA scheme [11,30].

All subsequent calculations for triangular meshes in Table 1 were conducted with dt = 0.061.
7 The triangular grid has been obtained from the advancing-front mesh generator, using the background spacing = 1, cf. [10].



Table 1

Error norms for solid-body rotation test using finite-volume and finite-difference versions of MPDATA; the classical upwind and

leapfrog schemes are included for reference

Scheme Max Min L1 L2

MPDATA FD 2.18 0. 2.00 0.47 · 10�3

MPDATA FV squares 2.18 0. 2.00 0.47 · 10�3

MPDATA FV triangles, dt = 0.1 2.19 0. 1.92 0.47 · 10�3

MPDATA FV triangles, dt = 0.061 2.08 0. 2.09 0.52 · 10�3

Upwind FD 0.27 0. 3.76 1.21 · 10�3

Upwind FV squares 0.28 0. 3.76 1.04 · 10�3

Upwind FV triangles 0.25 0. 3.68 1.06 · 10�3

Leapfrog FD 3.16 �0.62 1.68 0.62 · 10�3

Leapfrog FV squares 3.11 �0.67 1.71 0.64 · 10�3

Leapfrog FV triangles 3.11 �0.69 1.74 0.65 · 10�3

The first column identifies the scheme used, and the remaining columns provide accuracy characteristics of the numerical solutions

after 6 rotations of the cone. Second and third columns list the solution extrema (4 and 0 for the exact result). The fourth column

provides the values of the maximal solution departure from the exact result, while the fifth column gives the rms errors.
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Fig. 5 illustrates the uniform boundedness of corrective Courant numbers by those of the original up-

wind iteration. The MPDATA solution is displayed on an unstructured triangular grid (third entry in

Table 1) together with superimposed contour lines of the local Courant numbers of the original and cor-

rective upwind iterations – defined in (5) and (23), respectively. To optimize the readability of the display,

all Courant-number values were premultiplied by a factor of 100. Because the values in the corrective iter-

ation are uniformly smaller (a few times), they are displayed with a quarter of the contour interval used for

the original-upwind Courant numbers. The actual extrema of the fields defined in (5) and (23) are 1.64 and

0.81, respectively; while on the average the respective Courant numbers are 0.48 and 0.046 with correspond-
ing standard deviations of 0.19 and 0.07. Note that the uniform boundedness of the corrective Courant

numbers holds, even though the sufficient stability condition for upwind has been locally violated.
Fig. 5. Isolines of a cone advected through one rotation (heavy solid lines) with contour increment 1, starting at the value 0.25.

Superimposed are contours of the local Courant numbers (·100) from the original (dashed lines) and corrective (solid lines) upwind

iterations. Original Courant numbers start at the value 6 in the center of the domain and increase outward, whereas corrective Courant

numbers (labeled) start at 1.5. Both fields are displayed with contour intervals equal to their starting values.
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A comprehensive study of the asymptotic convergence – in the spirit of [25] and [11] – investigates the

convergence rate in function of both grid resolution and the Courant number. For unstructured meshes, it

requires a 2D generalization and a forbidable computational effort. To illustrate the convergence property

of finite-volume MPDATA, here we consider the following modification of the rotating-cone benchmark.

The unstructured triangular mesh used in the examples above (the background spacing 1) is regenerated
assuming the background spacing 2, 0.5, and 0.25. The cone is replaced by the axially symmetric Gaussian

hill W(x, t = 0) = Aexp(�0.5(x � xo)/Ro)
2, where A = 4, Ro = 5, and xo = (48,48); and the velocity field is

constant v = (2.4,2.4). The solution is advected over the distance 4
ffiffiffi
2

p
on all meshes using, respectively,

2, 4, 8, and 16 time steps dt = 2, 1, 0.5, and 0.25dt1, to maintain a constant (approximately) Courant

number.

Table 2 lists the standard norms of the solutions� departures from the analytic result. Both L2 and L1 are

normalized to reflect the rms and the absolute value of the truncation error per cell and the unit of time

[25,11]. Since all norms are equivalent in Rn (Corollary VII.1.2 in [15]), the asymptotic convergence rates
should not depend on the norm selection. The latter as well as the second-order convergence are illustrated

in the table.

In order to relate our finite-volume formulation to the finite-difference MPDATA benchmarks reported

over years, we considered so far a fairly regular unstructured grid. In general, state-of-the-art mesh gener-

ators are designed to maximize the mesh quality (viz. maximize smoothness and minimize skewness). To

substantiate further the theory of Section 2, we repeat the above-discussed convergence test on a purposely

designed, low-quality, skewed mesh, Fig. 6.
Table 2

Convergence of finite-volume MPDATA on unstructured mesh

Background spacing L1 L2 L1

2.00 2.95 · 10�2 8.73 · 10�3 1.83 · 10�3

1.00 7.69 · 10�3 2.22 · 10�3 4.73 · 10�4

0.50 1.93 · 10�3 5.57 · 10�4 1.19 · 10�4

0.25 4.86 · 10�4 1.43 · 10�4 3.07 · 10�5

The first column lists the background spacing of the mesh, the three remaining columns provide norms of the solutions� departures
from the analytic result.

Fig. 6. Regular (left) and skewed (right) grids used in the convergence study. The coarsest meshes are shown.



Table 3

Convergence of finite-volume MPDATA on unstructured skewed mesh

dE L1 L2 L1

3.99 3.58 · 10�1 1.38 · 10�1 2.86 · 10�2

2.05 2.01 · 10�1 6.68 · 10�2 1.38 · 10�2

1.03 8.51 · 10�2 2.34 · 10�2 4.78 · 10�3

0.51 1.86 · 10�2 5.14 · 10�3 9.41 · 10�4

0.26 3.23 · 10�2 1.48 · 10�3 2.52 · 10�4

The first column lists the equivalent spacing measure, the three remaining columns provide norms of the solutions� departures from the

analytic result.
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Table 3 lists the error norms for the sequence of skewed meshes, characterized by the equivalent spacing

measure dE := 100(Ncells)
�1/2. Each mesh is generated by halving the background spacing prescribed at

every point of the background mesh used for generation of the coarser mesh. The starting skewed mesh

is twice coarser than the regular mesh in Table 2. In effect, the asymptotic second-order convergence rate

does not reveal until the third refinement. Without the mesh-quality control, at the fourth refinement the

mesh becomes nearly singular in a number of points, whereupon the solution becomes linearly unstable. In

consequence, the convergence degrades.
5. Extensions

5.1. Nonoscillatory option

The algorithm described in Steps 1–5 in Section 3 preserves the sign but not the monotonicity of the

transported variables [23–25] and, in general, the solutions are not free of spurious extrema, Fig. 7. This

is because the antidiffusive velocity (16) is not necessarily solenoidal, even for a solenoidal physical flow
(6). In many studies of natural flows preservation of sign is adequate [27]. However, when required,

MPDATA can be made fully monotone [25] by adapting the FCT formalism [37] to limit the pseudo veloc-
Fig. 7. MPDATA solution for the solid-body rotation from Section 4, but with the cone replaced by the cylinder placed on a large

constant background.



Fig. 8. As in Fig. 7, but for the nonoscillatory-option MPDATA solution.
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ities in (16); cf. Fig. 8. It has been argued [25] that MPDATA is particularly well suited for this for several

reasons. Firstly, the initial MPDATA iteration is the upwind scheme – i.e., a low-order monotone scheme

commonly used as the reference in the FCT design. Secondly, assuring monotonicity of the subsequent iter-

ations provides a higher-order accurate reference solution for the next iteration with the effect of improving
the overall accuracy of the resulting FCT scheme. Thirdly, since all MPDATA iterations have similar low

phase errors characteristic of the upwind scheme [24], the FCT procedure mixes solutions with consistent

phase errors. This benefits the overall accuracy of the resulting FCT scheme (see Fig. 5 in [25] and the

accompanying discussion).

The FCT extension for Cartesian-mesh MPDATA has been presented in [25] together with an algebraic

theory of FCT limiting.8 Since the entire article [25] has been devoted to a thorough exposition, here we

only present a summary of final formulae, adapted for the edge-based finite-volume algorithm. Using

the notation of Section 3, and referring to Fig. 3 for the geometry, the FCT-limited antidiffusive velocity
(16) can be written compactly as
8 Th

alter st
ĉv?j ¼ v̂?j
h iþ

minð1; b#
i ; b

"
j Þ sgnðW�

i Þ
� �þ þminð1; b"

i ; b
#
j Þ sgnð�W�

i Þ
� �þ	 


þ v̂?j
h i�

minð1; b"
i ; b

#
j Þ sgnðW�

j Þ
h iþ

þminð1; b#
i ; b

"
j Þ sgnð�W�

j Þ
h iþ� �

; ð24Þ
where, for all i, the limiting coefficients b"
i and b#

i are
b"
i ¼

WMAX
i �W�

i
dt
Vi

PlðiÞ
j¼1½F �

j �
� þ e

; b#
i ¼

W�
i �WMIN

i
dt
Vi

PlðiÞ
j¼1½F �

j �
þ þ e

; ð25Þ
and the limiters WMAX
i and WMIN

i assume the form
WMAX
i ¼ max

j¼1;lðiÞ
ðWn

i ;W
n
j ;W

�
i ;W

�
j Þ; WMIN

i ¼ min
j¼1;lðiÞ

ðWn
i ;W

n
j ;W

�
i ;W

�
j Þ: ð26Þ
Formulae (25) and (26) conform, respectively, to the formulae (19a,b) and (20a,b) from [25]. Furthermore,

(24) extends the corresponding Eq. (18) of [25] – written explicitly only for nonnegative scalars – to fields of
e algebraic formalism has proven useful for synchronous FCT where physical bounds imposed on functions of transported fields

andard limiters for the individual fields [7,20].



Fig. 9. Initial condition for a unstructured-mesh advection. The W = 1 isosurface and contour plot in xy cross-section through

(approximately) the center of the sphere are shown in left and right panel, respectively.
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arbitrary sign, consistent with the convention of Section 3. Note that [sgn(±. . .)]+ factors in (24) are merely

logical switches, or if statements.9

Incorporating the nonoscillatory option in the algorithm in Steps 1–5 proceeds in two stages. Firstly,

preceding Step 1, the n time-level contributions to the limiters (26) are evaluated and stored, to be com-

pleted after Step 2. Secondly, immediately after Step 4 limiting coefficients (25) are evaluated, then the anti-

diffusive velocities (16) are limited according to (24), and the corrective upwind fluxes are reevaluated as in

Step 4 but with ĉv?j in lieu of v̂?j . Then, the solution of Step 5 is warranted to be locally bounded by the

limiters, i.e., WMIN
i 6 ~W

nþ1

i 6 WMAX
i .

To substantiate the theoretical development, we extend the solid-body rotation benchmark to three spa-

tial dimensions, and perform a series of tests with representative advection schemes.

A sphere with radius 15 and constant density 4, placed initially at xo = (25,75,75) Fig. 9, rotates with

angular velocity x = 0.1 · 3�1/2(1,1,1) around a diagonal of the cuboidal domain [0,100] · [0, 100] ·
[0,100]. The numerical solution uses an unstructured grid with 204,107 cells, and 1,486,871 edges. Similar
to the 2D tests, the 3D grid has been obtained from the advancing-front mesh generator, but using twice

larger background spacing = 2. Although the resulting average edge length (=2.1) is close to the specified

background spacing, there are substantial departures from the grid homogeneity, as measured by the stan-

dard deviation of the edge length 0.37, and the extrema 3.8 and 0.8. With the time step dt = 0.018 Æ 2p, the
resulting maximal Courant number on the r.h.s. of (A.10) is 1.83 . For the uniform flow vo = (1,1,1),

the discrete velocity divergence (19) vanishes to the round-off error. Since the actual rotational flow is pre-

scribed analytically, the maximal Courant-number divergence is 1.6 · 10�3, only three orders of magnitude

smaller than the Courant number itself. In order to generate graphic displays, the field values on the
unstructured grid are interpolated linearly to Cartesian mesh with 513 grid points. The accurate values

of relative accuracy and efficiency measures evaluated on the unstructured grid are listed in Table 4. All

solutions are evaluated after T = 10 Æ 2p 	 556dt, i.e., one revolution of the sphere around the domain

diagonal.
9 The special cases of W�
i ¼ 0 or W�

j ¼ 0 are nonproblematic, since the corresponding upwind fluxes vanish, thus having no

contribution to the formation of spurious extrema.



Table 4

Relative accuracy and efficiency measures for 3D finite-volume advection on unstructured grid

Scheme Max Min L1 L2 L1 CPU

Upwind 1.5 0.0 3.4 6.1 · 10�3 1.3 · 10�3 1

Leapfrog 7.1 �2.6 4.4 5.3 · 10�3 2.5 · 10�3 1.1

Leapfrog-Trp. 7.1 �2.5 4.4 5.3 · 10�3 2.5 · 10�3 0.8

MPDATA1 6.2 �1.2 3.0 3.7 · 10�3 8.0 · 10�4 1.9

Leapfrog-Trp. FCT 4.4 0.0 3.0 3.5 · 10�3 5.4 · 10�4 2.

MPDATA basic 4.8 0.0 2.9 4.1 · 10�3 7.8 · 10�4 4.3

MPDATA FCT 4.3 0.0 2.9 4.1 · 10�3 7.8 · 10�4 4.9

MPDATA1 FCT 4.4 0.0 2.8 3.2 · 10�3 4.1 · 10�4 3.9

The first column identifies the scheme used, the following five columns provide norms of the solutions� departures from the analytic

result, and the last column is the upwind-normalized approximate execution time.
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Similar to Tables 2 and 3, Table 4 lists three standard norms of the solution error, and both L2 and L1

norms are normalized to reflect the rms and absolute value of the truncation error per cell and the unit of

time. Inasmuch as L2 better reflects the overall accuracy, the remaining measures tend to emphasize the

amplitude and phase errors (viz. behavioral errors [19]). The approximate efficiency measure, with esti-

mated error ±0.2, is the total CPU time normalized by the total CPU time of the upwind solution.

The first four schemes listed in Table 4 are all linear, included merely for reference. Although sign pre-

serving and computationally efficient, the upwind advection is not of interest because of its low overall

accuracy, whereas the leapfrog schemes (both standard and trapezoidal, [37]) are unattractive because of
the dispersive oscillations; see Fig. 10 for illustration. The latter also concerns the ‘‘infinite-gage’’ variant

of MPDATA – denoted as MPDATA1 – the oscillatory Lax–Wendroff limit resulting from the lineariza-

tion of the basic MPDATA around a large constant background; cf. Section 3.2 in [30] and references

therein. The remaining four schemes are nonlinear. The three FCT schemes are formally monotone,10

whereas the basic MPDATA is only sign-preserving, viz. monotone near ‘‘zeros’’.

The spread of the computational efficiency measure aside, there is a clear demarcation between the exe-

cution times of the linear and nonlinear algorithms. The nonlinear algorithms are roughly three to four

times as computationally expensive as the linear schemes. Although the nonlinear schemes are more accu-
rate overall, preserving the monotonicity or sign of transported variables appears cost ineffective for pure

advection. However, in numerical simulation of fluids, the monotone or sign-preserving advection may not

be an option but a necessary prerequisite of the solution�s realizability (e.g., for reactive or multi-phase

flows). While arguments can be made that the basic and FCT MPDATA are of superior, or at least of com-

parable, accuracy to the classical leapfrog-trapezoidal FCT scheme (Fig. 11), the monotone MPDATA1
(Fig. 12) is the most accurate in all norms. The judgement of which scheme should be the method of choice

in not straightforward, as in practice there are factors other than the standard norms and the execution time

of the sole advection. Here we only note the superior symmetry of the standard MPDATA (Fig. 13), while
postponing further discussion until Section 6.

5.2. Diffusion

The underlying idea of MPDATA is the formal equivalence between the diffusion and advection on a

discrete mesh; see Section 3.2 in [24] for extended discussion. The simulation of diffusive transport as an

advection problem serves a double purpose. First, it documents the flexibility of the MPDATA approach.
10 The overshoots with respect to the initial amplitude 4 are cumulative effect due to the residual flow divergence (�W$ Æ v), and
dissapear for strictly incompressible flows (e.g., for constant v) – consistent with the FCT formalism that defines monotonicity

relatively to a smooth low-order solution (here upwind).



Fig. 10. Contour plots as in Fig. 9 but for the upwind and leapfrog solutions after one revolution of the sphere around a diagonal of

the domain. Positive and negative values are displayed with solid and dashed lines, respectively. Contour extrema and interval are

indicated above the frame, and zero contours are not shown.

Fig. 11. As in Fig. 9 but for the leapfrog-trapezoidal FCT solution after one revolution of the sphere.
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Second, it exposes alternative means of designing advection–diffusion schemes, practical for large eddy sim-

ulations of high Reynolds number flows.

Consider, in lieu of the advection Eq. (1), the elementary diffusion problem
oW
ot

¼ �r � ð�KrWÞ; ð27Þ
where K is a diffusion coefficient. The Fickian flux under the divergence on the r.h.s. of (27) may be formally

written in the form of advective flux �K$W ” XW, where X ¼ �K
WrW (if W 6¼0; X = 0 otherwise), thereby

transforming the diffusion Eq. (27) into the advection equation



Fig. 12. As in Fig. 11 but for the MPDATA1 FCT solution.

Fig. 13. As in Fig. 11 but for the basic MPDATA solution.
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oW
ot

¼ �r � ðXWÞ: ð28Þ
To verify the discrete advection–diffusion equivalence for 3D unstructured grids, we simulate the exter-

nal scalar diffusion problem for a sphere of radius R – an archetype of water drop evaporation with known

analytic solution, Section 2.2 in [21] – following the Cartesian mesh calculations of [24]. Assuming constant

K, spherical symmetry, and initial/boundary conditions
W ¼ 0 for r > R and t ¼ 0; W ¼ W0 for r 6 R and t P 0; ð29Þ

the analytic solution takes the form
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Wðr; tÞ ¼ R
r
W0 1� erf

r � R

2
ffiffiffiffiffi
Kt

p
� �� �

rPR

; ð30Þ
where
erfðyÞ ¼ 2ffiffiffi
p

p
Z y

0

e�z2 dz: ð31Þ
The numerical values are selected such as to augment the 3D calculations of the preceding section. Conse-

quently, R = 15, W0 = 4, and K = 1. The cuboidal domain is assumed, with the linear extend L = 100,
whereupon r 2 ½0; 50

ffiffiffi
3

p
�.

Fig. 14 shows the initial condition and the basic MPDATA solution of (28) after 3s; where s ¼ R2

pK is the

characteristic time of the external diffusion process, defined as the time after which the surface-integrated

flux of W at r = R equals twice its asymptotic value at tƒ1 [21]. The numerical solution uses the same

unstructured grid employed in 3D advection tests in Section 5.1, and the same postprocessing procedure

is used to generate the graphic display in Fig. 14. The figure conveys the sense of symmetry of the solution,

in spite of the mesh irregularity, whereas the quantitative measures of the solution accuracy are listed in

Table 5.
The error measures in Table 5 show that the advective solution to the diffusion equation is slightly more

accurate then the solution obtained with the standard diffusion scheme. Nonetheless, this relative accuracy

improvement is not the crux. Both solutions are dominated by the first order errors due to: (a) a primitive

approximation of the internal boundary condition posed in (29), and (b) the generality of the effective
5

acy measures of the MPDATA solution for the external diffusion problem

e L1 L2 L1

TA 2.6 · 10�4 4.8 · 10�4 1.5

2.8 · 10�4 5.4 · 10�4 1.8

sults using classical forward-in-time and centered-in-space diffusion (FTCS) scheme are included for reference. The first column

es the scheme used and the remaining columns provide norms of the solutions� departures from the exact solution.

. External diffusion on the sphere; W = 1 isosurfaces are shown for t = 0 (left plate) and after 3 characteristic times (right plate).

rical solution in the right plate uses an MPDATA advection scheme.
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diffusion velocity X, expanding beyond the simplifying assumption of a steady flow, adopted in (1). These

two aspects are important for complete flow solvers, and are addressed in the next section. The key point of

the highlighted results is the validity of the discrete advection–diffusion equivalence per se. Given sign-pre-

serving approximations, a parabolic diffusion equation can be solved to a dtOðdrÞ accuracy as a hyperbolic

advection equation. This opens avenues for designing a class of new schemes. In particular, in flow prob-
lems where solution monotonicity or sign-preservation is a necessary prerequisite of accurate results, incor-

porating diffusion into a nonoscillatory advection scheme may improve the computational economy of the

simulation, while often simplifying the programming effort. Moreover, the advective formulation allows for

stable integrations of diffusion problems with K < 0, potentially useful for representing backscatter in large-

eddy-simulations of high-Reynolds number flows [9].

5.3. Flow solvers

When applying two-time-level time-uncentered advection schemes to practical flow problems, one needs

to account for time dependence of the transporting velocities as well as arbitrary forcing on the r.h.s.. In

particular, in order to achieve second-order accuracy and to avoid spurious solution modes, it is important

to provide at least first-order accurate estimates of the advective velocities at n + 1/2 [24], and an approx-

imation of the forcing time-centered at n + 1/2 as well as a means of compensating the OðdtÞ error propor-
tional to convective flux of the r.h.s. [28]. The latter is a consequence of ignoring the r.h.s. while deriving

second-order-accurate advection schemes in the spirit of the tensor-viscosity approach [6]; i.e., via the

Taylor-series expansion of lower-order algorithms, as in Section 2.
A class of methods for integrating the fluid dynamics equations with nonoscillatory two-time-level

schemes – termed NFT, for the ‘‘nonoscillatory forward-in-time’’ – has been broadly documented in the

literature. The interested reader is referred to [30] for a review. Since NFT solvers do not depend on the

details of spatial discretization – but only assume a second-order-accurate nonoscillatory advection scheme

as a building block – the flow chart of the solver is common to flux-form finite-difference and unstructured-

mesh finite-volume discretizations. Below, we highlight11 the NFT solver proven successful for geophysical

flows [33], but adapt it to a high-Mach-number flow in a multiply connected domain, an application beyond

the reach of the standard, single-block Cartesian-mesh version of MPDATA.
We consider here the conservative adiabatic Euler equations in the form
11 Fo
oq
ot

þr � qv ¼ 0; ð32Þ

oH
ot

þr �Hv ¼ 0; ð33Þ

oqI

ot
þr � qIv ¼ � op

oxI
; ð34Þ
where q and p denote fluid density and pressure, respectively, and the momentum vector q = qv with qI

denoting its components for I = 1,2,3. H := qh is the density weighted potential temperature, with h denot-

ing the potential temperature defined as
h :¼ T ðp=p0Þ
�R=cp ; ð35Þ
r an extended discussion directed towards aerodynamic applications, the interested reader is referred to [35].
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where T is the temperature, R the gas constant, and cp the specific heat at constant pressure. The constant

p0 in (35) is a reference (free stream) pressure. The system (32)–(34) is supplemented with the ideal-gas con-

stitutive relation
p ¼ qRT � CHc; ð36Þ

where c ” (1 � R/cp)

�1.

The governing Euler equations can be written in a symbolic form
oW
ot

þr �Wv ¼ F W; ð37Þ
where W denotes any of the dependent variables in (32)–(34), and FW is the associated right-hand side – in

general, a functional of all dependent variables. Regardless of its complexity, an NFT algorithm for inte-

grating (37) over time step dt can be compactly written as
Wnþ1
i ¼ Aið ~W; vnþ1=2Þ þ 0:5dtF W

��nþ1

i
: ð38Þ
In (38), A is a shorthand for a NFT advection operator (here MPDATA), ~W is an auxiliary dependent

variable eWi ¼ Wn
i þ 0:5dtF Wjni , and vn + 1/2 is an Oðdt2Þ estimate of the velocity field at t + dt/2. The overall

algorithm in (38) provides fully second-order-accurate solutions Wnþ1
i , given a second-order accurate advec-

tion scheme A for an inhomogeneous yet time-independent flow v, and an Oðdt2Þ accurate estimation of the

forcing F Wjnþ1
i . Note that this particular NFT form is reminiscent of the Strang splitting [34]; cf. [28] for the

underlying theory, alternative forms, and discussion.

Given the general algorithm (38), a solution procedure for (32)–(36) readily follows. First, the advective

velocity v
nþ1=2
i is extrapolated linearly from the current n, and the preceding n�1 time levels. Second, the

auxiliary variables eWi are advected with MPDATA. Since neither (32) nor (33) are forced, this step also

provides the solutions qn + 1 and Hn + 1. Then, the updated pressure follows from (36), and momenta are

updated according to (38). Evaluating the advective velocities at n + 1 by dividing the newly updated
momenta by the updated density completes the model algorithm cycle.

The performance of the outlined NFT algorithm is illustrated for a transonic flow over an airfoil,

AGARD test case 04 for NACA0012 airfoil at Mach number M = 0.8 with incidence angle a = 1.25� [1].
The triangular mesh employed, consisting of 16,101 computational points with 323 points along the airfoil,

is shown in Fig. 15. The MPDATA solution has been benchmarked against solution 9 from the AGARD
Fig. 15. Computational mesh for the NACA0012 test case.



Fig. 16. Surface pressure coefficient for NACA0012 airfoil; M = 0.8, a = 1.25�. A comparison of the results using MPDATA and

AGARD results.
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report – contributed by Schmidt and Jameson [1, pp. 6.21–6.23] – obtained by a Runge–Kutta central dif-

ference code with a blend of the second- and fourth-order artificial dissipation terms [8], while using a

320 · 64 structured mesh. In the far field, placed at the distance of 20 chords, boundary conditions are spec-

ified from the free-stream values or extrapolated from the Riemann invariants, depending on the character

of the flow, super- or subsonic, and inflow versus outflow. At the airfoil, the free-slip condition is assumed.

Fig. 16 shows the standard display of the surface pressure coefficient Cp for the FCT-MPDATA and the

AGARD reference solution 9. The MPDATA solution compares favorably with the benchmark result. In
the MPDATA solution, both the upper- and lower-surface shocks are captured with one point only,

whereas in the AGARD solution the two shocks are captured with 3 and 4 points, respectively. Further-

more, MPDATA gives a much sharper pressure jump on the weaker lower-surface shock (located in the

region of higher wall curvature) that, in contrast, is heavily diffused in the AGARD data.
6. Concluding remarks

We developed the theory of basic MPDATA in an arbitrary finite-volume framework with a fully

unstructured polyhedral hybrid mesh. We showed that our finite-volume formulation preserves the signa-

ture benefits of the standard Cartesian-mesh MPDATA scheme – i.e., sign-preservation, a full multidimen-

sionality, and the overall accuracy exceeding the accuracy of the centered in time and space approximation.

Furthermore, we developed extensions important for applications, such as a fully monotone option, the
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‘‘infinite gage’’ MPDATA (a linearized variant proven successful in Cartesian-mesh simulations of turbu-

lent flows), and a diffusion scheme. We generalized the approach to a fully compressible flow solver, thereby

documenting that the new framework is well suited for adapting the accomplishments of Cartesian mesh

MPDATA in the unstructured mesh environment. The example of flow past a 2D airfoil in Section 5.2

is perhaps the first documented application of an MPDATA-based flow solver in multiply connected do-
mains. The ease of modeling multiply connected domains using unstructured meshes promises new avenues

for MPDATA in the area of atmospheric/oceanic flows, for which the scheme was developed originally, and

for which MPDATA is known the best.

The presented framework allows extending the applicability of MPDATA to engineering problems. The

result for the transonic flow around NACA0012 airfoil shows the promise of the method as it is substan-

tially less diffusive than the Runge–Kutta Jameson schemes routinely used in the aeronautical design.

Moreover, unlike many numerical schemes, MPDATA appears not to enlarge numerical diffusion on

unstructured meshes, evincing solutions close to analogous solutions on Cartesian meshes. The problem
of numerical overdiffusivity is known to be particularly severe for distorted meshes. This highlights the po-

tential importance of the �mesh-skewness-term� – a new aspect relevant, in general, to both structured- and

unstructured-mesh formulations – revealed in the derivation in Section 2, and consequently the importance

of a careful choice of discretization. We intend to study this further.

Over the last two decades, finite-difference MPDATA has been frequently compared with other trans-

port schemes, primarily in the context of passive scalar advection. The assessments of MPDATA�s relative
strengths and weaknesses reported in the literature depend very much on the schemes included in compar-

isons, choice of test problems, MPDATA�s options, and details of implementation. The most common
complaints are that the basic MPDATA is too diffusive, while enhanced MPDATAs are too expensive.

The most often acknowledged virtues are MPDATA�s multidimensionality, robustness, and its underlying

conceptual simplicity. These advantages carry over to the finite-volume unstructured-mesh formulation,

whereas the relative efficiency of advection becomes less important with increasing complexity of the fluid

models. In particular, the accuracy and efficiency measures of various oscillatory and nonoscillatory

schemes listed in Table 4 in Section 5.1 stimulate a query ‘‘which scheme is optimal’’. In our experience,

there is no straightforward answer. Consider, for instance, that for implicit flow solvers the efficacy of a

fluid model depends critically on the efficiency of the associated elliptic solver. The latter, in turn, depends
on the spectral composition of the r.h.s. depending, in turn, on the spectral properties of the advective

transport [29]. The finite-difference experience with MPDATA indicates that various options have merit

for an accurate simulation of complex high-Reynolds-number flows, cf. [31].
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Appendix A. Stability considerations

A.1. Positivity of finite-volume upwinding

In order to show the sufficiency of (5) for preserving the nonnegative character of the fields transported

with the upwind scheme (2), (3), we write the latter in the closed form
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Wnþ1
i ¼ Wn

i �
XlðiÞ
j¼1

½Uj�þWn
i þ ½Uj��Wn

j

n o
; ðA:1Þ
where Uj is a contribution to the local Courant number defined in (5). Rearranging (A.1) as
Wnþ1
i ¼ 1�

XlðiÞ
j¼1

½Uj�þ
 !

Wn
i �

XlðiÞ
j¼1

½Uj��Wn
j ðA:2Þ
implies
Wnþ1
i P 1�

XlðiÞ
j¼1

½Uj�þ
 !

Wn
i ; ðA:3Þ
given Wn
j P 0 8j. Consequently, 1�

PlðiÞ
j¼1½Uj�þ P 0 suffices for Wnþ1

j P 0 8j. h

For nonpositive fields Wn
j 6 08j, this also holds – since multiplying (A.1) by (�1) recovers the result

above for eWnþ1

j P 0 8j, where eW � �W. Extending the proof for fields of variable sign involves: (i) decom-

posing W into the nonnegative and nonpositive parts [W]+ and [W]�, as in (4); and (ii) noting that the

Lagrangian counterpart of the governing advection problem in (1), DW/Dt = 0, implies D[W]+/Dt = 0

and D[W]�/Dt = 0 (due to the disjoined supports of [W]+ and [W]� along flow trajectories). In consequence,

the Eulerian form (1) must be satisfied for both parts separately, cf. [32] for a discussion.
For finite volume schemes, the sign preservation ensures nonlinear stability, because the finite-volume (2)

enforces conservation by design; whereas the sign-preservation enforces conservation of the |W|, viz. the

solution boundedness in the
P

| | norm. From the norm equivalence in Rn (cf. Corollary VII.1.2 in [15])

the latter ensures the solution boundedness in the L2 norm; cf. [32] for a discussion.

A.2. Convexity of finite-volume upwinding

In order to show the sufficiency of (5), (6) for the solution convexity in (7), we note first that (6) implies
XlðiÞ
j¼1

Uj ¼ 0 )
XlðiÞ
j¼1

½Uj�þ ¼ �
XlðiÞ
j¼1

½Uj�� ¼
XlðiÞ
j¼1

½Uj��
�� ��: ðA:4Þ
Since
XlðiÞ
j¼1

½Uj�þ �
XlðiÞ
j¼1

½Uj�þ
�� ��; ðA:5Þ
the positivity/stability condition (5) together with (A.4) ensure
XlðiÞ
j¼1

½Uj�þ
�� �� ¼XlðiÞ

j¼1

½Uj��
�� �� 6 1: ðA:6Þ
Employing in (A.2) the identity (A.5), equalities (A.4), and the condition (A.6) results in
Wnþ1
i ¼ Wn

i 1�
XlðiÞ
j¼1

½Uj�þ
�� �� !

þ
XlðiÞ
j¼1

½Uj�þ
�� ��Wn

j 6 Wn
i 1�

XlðiÞ
j¼1

½Uj�þ
�� �� !

þ max
j¼1;lðiÞ

Wn
j

XlðiÞ
j¼1

½Uj�þ
�� ��

6 max
j¼1;lðiÞ

ðWn
i ;W

n
j Þ: ðA:7Þ
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On the other hand,
Wnþ1
i ¼ Wn

i 1�
XlðiÞ
j¼1

½Uj�þ
�� �� !

þ
XlðiÞ
j¼1

½Uj�þ
�� ��Wn

j P Wn
i 1�

XlðiÞ
j¼1

½Uj�þ
�� �� !

þ min
j¼1;lðiÞ

Wn
j

XlðiÞ
j¼1

½Uj�þ
�� ��

P min
j¼1;lðiÞ

ðWn
i ;W

n
j Þ 1�

XlðiÞ
j¼1

½Uj�þ
�� ��þXlðiÞ

j¼1

½Uj�þ
�� �� !

¼ min
j¼1;lðiÞ

ðWn
i ;W

n
j Þ; ðA:8Þ
and the union of (A.7) and (A.8) completes the proof.

Note that, (A.6) together with identities in (A.4) and (A.5) gives
XlðiÞ
j¼1

½Uj�þ 6 1;
XlðiÞ
j¼1

�½Uj�� 6 1: ðA:9Þ
Since |U| = [U]+ � [U]� from the definitions in (4), adding both inequalities in (A.9) results in
XlðiÞ
j¼1

jUjj 6 2; ðA:10Þ
a stability condition equivalent to the one familiar from finite-difference literature; e.g. (4) in [23].
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